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Elastic incoherent neutron scattering (EINS) data can be approximated with a Gaussian function of ¢ in a
low g region. However, in a higher g region the deviation from a Gaussian function becomes non-negligible.
Protein dynamic properties can be derived from the analyses of the non-Gaussian behavior, which has been
experimentally investigated. To evaluate the origins of the non-Gaussian behavior of protein dynamics, we
conducted a molecular dynamics (MD) simulation of staphylococcal nuclease. Instead of the ordinary cumulant
expansion, we decomposed the non-Gaussian terms into three components: (i) the component originating from
the heterogeneity of the mean-square fluctuation, (ii) that from the anisotropy, and (iii) that from higher-order
terms such as anharmonicity. The MD simulation revealed various dynamics for each atom. The atomic
motions are classified into three types: (i) “harmonic,” (ii) “anisotropic,” and (iii) “anharmonic.” However,
each atom has a different degree of anisotropy. The contribution of the anisotropy to the total scattering
function averages out due to these differences. Anharmonic motion is described as the jump among multiple
minima. The jump distance and the probability of the residence at one site vary from atom to atom. Each
anharmonic component oscillates between positive and negative values. Thus, the contribution of the anhar-
monicity to the total scattering is canceled due to the variations in the anharmonicity. Consequently, the
non-Gaussian behavior of the total EINS from a protein can be analyzed by the dynamical heterogeneity.

DOI: 10.1103/PhysRevE.75.041912

I. INTRODUCTION

Proteins are fascinating molecular machines in living sys-
tems. Their three-dimensional structures are the consequence
of evolution to perform various biological functions. As seen
in ordinary machines of our daily lives, the relationship be-
tween structure and function is linked through dynamics.
Therefore, it is essential to understand the physical nature of
protein dynamics in order to capture the nature of protein
function.

Incoherent neutron scattering is suitable for studying pro-
tein dynamics between femto-second (fs) to nano-second
(ns) time scales [1,2]. When elastic incoherent neutron scat-
tering (EINS) data is measured as a function of the scattering
vector g, it is approximated with a Gaussian function (Gauss-
ian approximation) [3]. The EINS from a single harmonic
oscillator is given with a Gaussian function. In a multidimen-
sional system, the Gaussian approximation is valid for a ho-
mogeneous harmonic system in the entire ¢ range or for any
system with small g values. In the case of a protein, the

* Author to whom correspondence should be addressed. Mailing
address: Graduate School of Materials Science, Nara Institute of
Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101,
Japan. Email address: kataoka@ms.naist.jp

1539-3755/2007/75(4)/041912(8)

041912-1

PACS number(s): 87.15.He, 61.12.Ex, 87.14.Ee

EINS is mainly caused by the hydrogen atoms due to their
large cross section of incoherent scattering. Each hydrogen
atom shows a different dynamical motion. The mean-square
fluctuation averaged over all the hydrogen atoms in protein,
(Ar?), can be reasonably derived from the ¢ dependence of
the EINS data because the Gaussian approximation is always
valid in the low g range [2]. -

The temperature dependence of (Ar?) provides informa-
tion on the dynamical transition, which is an important prop-
erty of protein dynamics. Various experimental techniques
such as x-ray crystallography [4] and Mdssbauer spectros-
copy [5], as well as EINS [6,7], have been used to detect the
inflection of (Ar?) at ~200 K. It has been argued that protein
dynamics at lower temperatures can be nearly regarded as
harmonic motions within one of the conformational substates
and makes a transition to anharmonic diffusive motions that
involve jumping among different substates at higher tem-
peratures. Such diffusive anharmonic motions have been
shown to be crucial to the function of bacteriorhodopsin in a
purple membrane [7] and crystalline ribonuclease A [4].

At higher g regions, deviations of the EINS profile from
the Gaussian approximation, namely the non-Gaussian be-
havior or the non-Gaussianity [8], is not negligible in a pro-
tein. The non-Gaussian behavior originates from either the
anharmonicity, dynamical heterogeneity, or anisotropic fluc-
tuation of atoms. In protein dynamics, all are plausible ori-
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gins. Doster et al. have analyzed the non-Gaussianity in
terms of the anharmonicity in protein dynamics with a two-
site jump model [6]. The estimated distance and enthalpy
difference between the two sites were 1.5 A and 12 kJmol™!,
respectively. The dynamical transition of a protein clearly
indicates an activation of the anharmonic motions. Hence,
the anharmonicity would be an origin of the non-Gaussianity,
at least above the transition temperature. Recently, dynami-
cal heterogeneity has been used to characterize the non-
Gaussianity [8]. In the analysis, the distribution of the mean-
square displacement (MSD) was explicitly introduced.
Among the possible distributions of the MSD, a simple bi-
modal distribution was sufficient to explain the non-Gaussian
behavior and the dynamical heterogeneity of a protein. The
dynamical transition can be explained with a discontinuous
increase of the average value of the MSD. Therefore, both
analyses can satisfactorily explain the non-Gaussian behav-
ior. However, each analysis has weaknesses. The former
analysis assumes that all the hydrogen atoms have identical
motions, which is unlikely in a real system, while the latter
analysis assumes that all the hydrogen atoms are harmonic
oscillators, although anharmonic motions are activated above
the dynamical transition temperature.

Molecular dynamics simulations can reveal the motion of
each hydrogen atom on a femto-second to a nano-second
time scale. The effects of heterogeneity, anharmonicity, and
anisotropy to the EINS profile can be directly estimated and
quantitatively discussed. For these purposes, we decomposed
the EINS profile into four terms instead of the ordinary cu-
mulant expansion: a Gaussian, and the contributions from
heterogeneity, anisotropy, and anharmonicity. Anharmonicity
originates from the multiple-minima nature of the protein
energy landscape [9]. In a nonparabolic energy surface, the
fourth- or higher-order terms of atomic fluctuations do not
vanish. On the other hand, heterogeneity originates from the
atom-dependent nature of protein fluctuation. It should be
noted that even a heterogeneous harmonic system can show a
non-Gaussian behavior. In general, atomic fluctuations of a
protein vary from atom to atom. The second-order moment
of an atomic coordinate, i.e., the atomic mean-square fluc-
tuation, strongly depends on the atom position [10,11]. We
call this feature “the second-order heterogeneity” throughout
this paper, although it is commonly termed “heterogeneity”
in this field [8,12,13].

The combination of computer simulations with neutron
scattering experiments allows a wide range of dynamical
phenomena in condensed-phase biomolecular systems to be
characterized [2,14]. Despite numerous efforts using com-
puter simulations [12,13,15,16], the non-Gaussian behavior
of the EINS profile has yet to be fully understood. In this
paper, we demonstrate that the second-order heterogeneity is
the dominant component of the non-Gaussian behavior of an
EINS profile based on the results of molecular dynamics
(MD) simulations on an enzyme, Staphylococcal nuclease
(SNase). We also examine the non-Gaussian behavior of the
EINS of each atom to reveal the effects of anharmonicity,
heterogeneity, and anisotropy on the total EINS.
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II. METHODS

A. Elastic incoherent structure factor (EISF)

The quantity of interest in the elastic incoherent neutron
scattering (EINS) experiment is the elastic incoherent struc-
ture factor (EISF), S(q,0), where q is the momentum trans-
fer. Theoretically the EISF is given as [17]

1 1 .
S(q,0) = I—VE 51(q,0) = ]—VE |(e~Tamy|?
k k

= (e ™)[* = 5,(q,0), (1)

where N, r;, and s.(q,0) are the number of hydrogen atoms
in the protein, the position vector of the kth hydrogen atom,
and the atomic scattering function of the kth atom, respec-
tively. The angle bracket indicates an ensemble average and
the bar denotes the average over all the hydrogen atoms in
the protein. Because the incoherent scattering length of a
hydrogen atom is much larger than all the other atoms in a
protein, the contribution from nonhydrogen atoms to the ob-
served EISF is negligible and thus not considered in Eq. (1).
According to Eq. (1), the EISF is easily calculated from the
coordinate trajectory of the MD simulation. When the origin
of the coordinate is chosen to be the average of position
vector, (ry), Eq. (1) can be expressed as

1 . _
S(q,0) = NZ [(emaary|? = [(e a2, (2)
k

where Ar, is the displacement from the average position.

B. Gaussian approximation and polynomial expansion
of the elastic incoherent structure factor

The EISF can be expressed as a one-dimensional Gauss-
ian function of g=|q| in the Gaussian approximation as

1
S(g.0) = eXp<— §<Ar2>q2> 3)
or
In S(g,0) = - %qu’ (4)

where Ar=|Ar|. Here the assumed distribution of each
atomic fluctuation is an isotropic Gaussian in three dimen-
sions and (Ar?)/3=(Ax;+Ay;+Az;)/3 is derived as the “ef-
fective” one-dimensional variance of the distribution. There-
fore, plotting the observed In S(g,0) as a function of q2 can
estimate the mean-square fluctuation (A7°) as the slope of the
regression line. This method is commonly employed to ana-
lyze the experimentally observed EISF. In order to clarify the
non-Gaussian component of the EISF, we need to describe
the index of an exponential function with a polynomial ex-
pression. Using the cumulant expansion, Eq. (2) can be re-
written as

5(q,0) = 5,(q,0) = fe~72MT + Vealmg)a eemg)a™ 1 (5

where g=|q| and ng is a unit vector along the vector q as
q=gny. The coefficients, ¥;,,(n,) (m=1,2,3,...), are de-
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fined as the second- or higher-order moments,

Yk,z(nq) = <(nq -Ar)?),

ia(ng) = ={((ng - Ar)) - 3(mg - A,

yk,ﬁ(nq) =

1 J{(ng- Ar)®) = 15((ng - Ary)*)}(ng - Ary)?)
"~ 360

= 10{(n, - Ary)*)> +30((n, - Ar})*)’

(6)

To derive Eq. (5) and Eq. (6), the condition (Ar;)=0 is used.
In the treatment by Doster et al. [6], all the hydrogen atoms
in a protein are assumed to have the same 7, ,,(ng) values,
i.e., ¥2m(ng) does not depend on k. In this paper, we employ
a rigorous treatment of the k dependence of 7, ,,,(ng). From
Eq. (5), the natural logarithm of the EISF can be expanded as

In S(q,0)
== Yk,z(nq)qz

1
+ E{U’Zk,z(nq) - (7k,2(nq))2} + 7k,4(nq) q*

1
570 =300 (iang)) + 20020} |

L+ Ye2(0g) Yea(ng) = (72(0g)) (Via(ng)) + i 6(ng)
+ o (7)

In the low ¢ range, the terms of ¢* and higher-order terms are
expected to be negligible.

C. Decomposition of the elastic incoherent structure factor

In the high g range, In S(¢,0) deviates from the linear
function of ¢? [6,8], indicating that the ¢* term and higher-
order terms in Eq. (7) are not negligible. Although Eq. (7) is
mathematically correct, the physical origins for the non-
Gaussianity are not explicitly described. In order to clarify
the physical origins of the non-Gaussianity, the contributions
from the anharmonicity, heterogeneity, and anisotropy to the
higher-order terms should be evaluated individually and ex-
plicitly. Thus, we decomposed Eq. (5) into four terms instead
of the cumulant expansion as follows:

S(q,O) — Sgauss(q’o) + S2—hetero(q’0) + SZ—aniso(q’O)
+ Shigher(q’o) — Sgauss(q’o) + Si—hetem(q’o)
+ Si—aniSO(q’O) + s;(ngher(q’o)’ (8)

where

§E9(,0) = exp<— %ch), 9)

1 Ly
sl%-hetem(q,o) _ exp<_ g(Al’]%>q2> - exp(— g(Ar2>q2> >

(10)
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$T(q,0) = ¢ AN - eXP(‘ 3 <Ar,%>q2> .o

S?igher(q’o) - sk(q,O) — e—}’k,z(nq)qz. (12)

(Ar}) is the mean-square fluctuation of the kth hydrogen
atom. The Gaussian approximation only considers the first
term in Eq. (8). The second and the third terms represent
contributions from isotropic and anisotropic heterogeneity,
respectively. S>"(4,0) corresponds to the “second-order
heterogeneity” and S>"°(¢,0) is the “second-order aniso-
tropy.” The fourth term represents other contributions, espe-
cially anharmonicity. In the previous work [8], only
522955 0) and S2"e(4,0) were explicitly considered.

EINS experiments are typically performed with powder or
solution samples. The observed EISF is, thus, the spatial av-
erage of S(g,0), which leads to the expression of the EISF
with g=|q| instead of q.

D. Simulation procedure

We performed molecular dynamics (MD) simulations of
Staphylococcal nuclease (SNase) in water using the program
package AMBER?7 [18] with the AMBER 94 force field [20]
and the TIP3P water model [21]. A periodic boundary con-
dition was imposed and the particle mesh Ewald method [19]
was used (the Lennard-Jones interaction and the real space
Ewald sum smoothly switched to 0 at 10 A). The system was
weakly coupled to a heat bath by the Berendsen method [22]
with a relaxation time of 0.2 ps in order to maintain a con-
stant temperature of 300 K. The Berendsen method was also
used to maintain a constant pressure of 1 bar with a relax-
ation time of 0.2 ps. Hydrogen atoms were constrained using
SHAKE [23].

The crystal structure of the SNase protein data bank (PDB
[24] code: 1STN [25]) was employed as the initial coordinate
of the simulation. Missing residues 1-5 and 142-149 were
constructed using the NMR structures of SNase (PDB code:
1JOQ and 1JOR [26]). The system consisted of 149 residues
(2395 atoms), 13 630 water molecules, and 8 chloride ions in
a box (79.1 X 81.3%x81.3 A3).

A MD simulation was performed by the following proce-
dure: (1) The energy was minimized to optimize the posi-
tions of the hydrogen atoms; (2) 260-ps MD was performed
to equilibrate the system to 300 K and 1 bar by gradually
relaxing the restraints; (3) 1-ns MD was carried out with an
integration time step of 2 fs. The coordinate trajectory was
stored every 0.1 ps and was used in the analysis. It should be
noted that the external motions of the protein were removed
in the calculation. In this paper, we focus on the behavior of
the EINS profile, which originates from the internal dynam-
ics of the protein.

III. RESULTS AND DISCUSSION

A. Contribution of non-Gaussian components to the total
elastic incoherent structure factor

Figure 1 shows the elastic incoherent neutron scattering
profile calculated by a 1-ns MD simulation of SNase at
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FIG. 1. (Color) (a) EISF as a function of ¢ calculated using the
result of 1-ns MD simulation at 300 K. Total S(¢g,0) (black line)
and its components S2%5(g,0) (yellow line), S2e(4 0) (blue
line), $>*%(4,0) (green line), and SMe"(g,0) (red line) are
shown. (b) Total S(g,0) (solid line) and the sum of $8"5(¢,0) and
§Zhetero( 0 (broken line) are shown.

300 K with their components, S25%(g,0), S*'er(g4,0),
§Zaniso(40), and SMehe(¢,0). The contribution ratios of these
components to the total EINS in area basis are 57.4%,
34.6%, 5.5%, and 2.5%, respectively. S>*"°(¢,0) is a broad
maximum centered at g=2.5 A~! and gives a small flat base
to the total S(¢,0) between g=1 and g=5 A~". shigher(4 0) is
negligible up to g=1 A~ and is a broad maximum centered
at g=3 A~'. It also gives a small, flat base. The sum of the
first two terms, S2%%(¢g,0) and S2"°©™(4,0), is dominant in
the total S(g,0) as shown in Fig. 1(b). The MD simulation
clearly shows that the non-Gaussianity of S(g,0) originates
mainly from the second-order heterogeneity. The contribu-
tions from anisotropy and anharmonicity are negligible.
Therefore, we conclude that the analysis of the non-
Gaussianity with the dynamical heterogeneity [8] is valid
even at room temperature.

B. Relation between the second-order heterogeneity
and the atomic mean-square fluctuation

MD simulations provide a detailed trajectory for each
atom. Therefore, the neutron scattering function from an in-
dividual atom can be rigorously examined. As shown in the
previous section, S2"°°(g,0) contributes to the total EINS
by 34.6% in area basis. The contribution of each atomic
component to S*"°°(4 0) is considered by calculating the

integral of 5;™"°(¢,0) over ¢ from ¢=0 to infinity. As de-
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fined in Eq. (10), si'hetero(q,O) is closely related with the
atomic mean-square fluctuation (Ar;). The integral s is
given as

Sp= f si'hetero(q,O)dq. (13)
0

This integral can be analytically calculated using Eq. (10) as

so=STHAD - BRI (4)

Equation (14) shows that s, should be proportional to
{(Ar})}""2. In fact, the numerically calculated s, values by
Eq. (13) are clearly proportional to {(Ar;)}~"? as shown in
Fig. 2(a). Note that the abscissa is the reverse of the square
root of (Ari). The smaller the atomic mean-square fluctua-
tion is, the larger the contribution to the second-order hetero-
geneity becomes. From Eq. (8) and Eq. (13), the average
value of g, over hydrogen atoms, s;, indicates the area of
§¥hetero(g,0). Even though s; of a largely fluctuating atom
with <Ar,%>><Ar2> is negative, the average value, s, can be
theoretically proved to be non-negative. s; equals to the in-
tegral of s; ""°(¢,0) from O to infinity and sy ""(¢,0) is
non-negative because of the relationship between the arith-
metic average and the geometric average as shown in Eq.
(10).

In Fig. 2(b), the magnitude of s; is shown by the colors
mapped onto the hydrogen atoms in SNase. The atoms in the
inner core region have large s; values (red), while the atoms
in the outer region have small s values (blue). This indicates
that the former atoms have smaller mean-square fluctuations
while the latter atoms show larger mean-square fluctuations.
Therefore, the atomic fluctuation gradually increases from
the inner core region to the outer region. As seen in Fig. 2(b),
most of the hydrogen atoms in a protein core positively con-
tribute to S>M°(g,0), especially atoms in the so-called
“B-core region” [25].

Figure 2(c) shows the distribution of (Ar;) over hydrogen
atoms in the protein. Two peaks are observed around 0.4 and
1.2 A% These values are significantly smaller than the aver-
age value (Ar?)=2.25 A2, Atoms around these peaks posi-
tively contribute to s;. The frequency of the distribution is
not a maximum at zero, because all atoms in the protein
fluctuate at least ~0.1 A? by the thermal energy at 300 K.
The distribution of (Ar;) has a long tail toward higher values
from the two peaks (up to 35.1 A2). This distribution is simi-
lar to the distribution of the crystallographic B factor [8].
The distribution of (Ar,%) can be deduced from the non-
Gaussianity of S(g,0) because S>"°°(4,0) is the major ori-
gin of the non-Gaussianity as shown in Sec. IIT A. An experi-
mental attempt to obtain a distribution function of (Ari) was
performed by Nakagawa ef al. [8]. They indicated that a
bimodal distribution function model was more appropriate
than either a Gaussian distribution function model or an ex-
ponential distribution function model. The distribution of
(Ar,%) shown in Fig. 2(c) suggests the bimodal distribution
model is valid as a first approximation.
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FIG. 2. (Color) Relationship between the second-order hetero-
geneity and the mean-square fluctuations of the hydrogen atoms. (a)
s given by Eq. (13) as a function of {(Ar,%)}‘”z. (b) Magnitudes of
s are shown by colors mapped onto the hydrogen atoms along with
the ribbon model of SNase using PyMoL [30]. The s; values de-
crease in the order of red, orange, yellow, green, light blue, and
blue. The atoms selected for Fig. 3 are highlighted with large
spheres. (c) Distribution of (Ar,%).

C. Atomic dependence of anisotropy and anharmonicity

Protein dynamics is highly anisotropic and anharmonic. In
fact, the present MD simulation on SNase reveal that numer-
ous hydrogen atoms show anharmonic motions. The number
of atoms that show anisotropy is also not small. Neverthe-
less, the contributions from anharmonicity and anisotropy to
the total S(g,0) are negligible as shown in Fig. 1. The con-
tribution of each atomic scattering function to the total scat-
tering function will be examined in detail hereafter.

MD simulations reveal that hydrogen atoms can be cat-
egorized into the following four types in terms of dynamics:
“harmonic,” “anisotropic,” and two types of “anharmonic”

EEINT3
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FIG. 3. (Color) Probability distributions of the atomic fluctua-
tions (a—d) and the atomic scattering function with its components
(e-h) for typical hydrogen atoms. Selected atoms are as follows: for
(a) and (e) the hydrogen atom bound to Ca of Met 98 as an example
of a “harmonic” atom; for (b) and (f) the hydrogen atom bound to
Ca of Asn 68 as an example of an “anisotropic” atom; for (c) and
(g) the hydrogen atom bound to Cg of Glu67 as one example of an
“anharmonic” atom; and for (d) and (h) the hydrogen atom bound to
Cg of Ile18 as another example of an “anharmonic” atom. From (a)
to (d), solid lines indicate the distributions of atomic fluctuations
and broken lines indicate the approximated Gaussian function with
the variances <Axi>, <Ay,%>, and (Azi}. Blue, black, and red indicate
the x, y, and z direction, respectively. From (e) to (h), si(¢q,0),
S8aus(g,0), Si’helem(q,O), $270( 4 0), and szigher(q,O) are depicted
with black, yellow, blue, green, and red lines, respectively.

atoms. Figure 3 shows a typical example of the probability of
atomic fluctuation and the atomic scattering function for
each category.

The distribution of the atomic fluctuation of the “har-
monic” atom is nearly an isotropic Gaussian as shown in Fig.
3(a) for the hydrogen atom bound to Ca of Met98 [atom a in
Fig. 2(b)]. The atomic scattering function is composed of
S&uss(g.0) and si'he‘em(q,O) [Fig. 3(e)]. The other compo-
nents are essentially negligible as these atoms contribute
only to the second-order heterogeneity. There are 394 “har-
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monic” atoms. It should be noted that (Arg) < (A% in these
atoms.

The hydrogen atom of Ca of Asn68 is a good example of
the “anisotropic” atoms [atom b in Fig. 2(b)]. The distribu-
tion of the atomic fluctuation is Gaussian, but shows a dis-
tinct anisotropy. When the probability is plotted on a tertiary
structure, the shape is a rotational ellipsoid (in this case ob-
late). The contribution of sz"‘““s"(q ,0) becomes remarkable as
shown in Fig. 3(f). The axial ratio and rotation radius of the
ellipsoid determine the position and height of the broad
maximum of si'am“’(q,O). The “anisotropic” atom does not
substantially contribute to sI'€"(g,0). (Ar7) of the hydrogen
atom (0.55 A?) is much smaller than the average (Ar?)
=2.25 A2 There are 337 “anisotropic” atoms.

One type of the “anharmonic” atoms is characterized by
two clear maxima for the distribution probability [Fig. 3(g)].
This reflects a two-site jump motion, which is the same mo-
tion introduced by Doster et al. A typical example is the
hydrogen atom of Cy of Glu67 [atom c in Fig. 2(b)]. “An-
harmonic” atoms are highly mobile ((Ari>=2.89 A? for the
atom c). The shape of the probability on a tertiary structure is
a hollow ellipsoid. The atomic scattering function is com-
posed of four components [Fig. 3(g)]. The contribution to
sy 14, 0) is small, but is negative in the lower ¢ region.
The contributions of si'a“is"(q,O) and sﬁigher(q,O) are larger
than si'he“’m(q,O). szigher(q,O) oscillates around zero. The
peak height of s7"°(¢,0) is almost the same as that of

shieher(4 0), but the position is located on the lower g side. In

this case, the negative contributions of s:"“°(g,0) and
spEhr(4 0) are canceled by the positive contribution of
s,%'a“iso(q,O). As a whole, the atomic scattering function is a
Gaussian function on the lower ¢ side and s}'¢"(¢,0) deter-
mines the scattering function of the higher ¢ side. The jump
distance, that is, the distance between two maxima, and the
ratio of the heights determine the peak position and the
crossing point of si€™"(g,0). When the jump distances are
broadly distributed, sﬁigher(q,O) is canceled and SM&h*’(4,0)
becomes negligible. There are 253 “anharmonic” atoms.

The other type of “anharmonic” atoms is characterized as
a complex shape of the probability of atomic fluctuation
[Fig. 3(h)]. These types of atoms are also highly mobile
((Ari)=3.92 A?). Figure 3(d) shows a typical example of the
probability of the atomic fluctuation for the hydrogen atom
bound to Cvy of 1le18 [atom d in Fig. 2(b)]. A two-site jump
is dominant for the z direction. The probability function for
the x direction is composed of a major peak at the origin and
a small subsidiary peak, suggesting two-site jumps rarely
occur. The probability function for the y direction is similar
to that for the x direction, but the main peak has a shoulder,
suggesting a jump among multiple minima. Figure 3(h)
shows the atomlc scattering function and its component for
the atom. si"°(g,0) is negative between ¢=0 and g
=2 A~!, but the magnitude is rather small. There are 228 of
these types of atoms. Therefore, the contribution to

spee0(g,0) is averaged out. Although the motions are quite
anisotropic, si amso(Aq,O) does not contribute to the total
atomic scattering. sl,:’gher(q,O) shows two maxima, which are
reflected in the atomic scattering function. The oscillation
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“0.1
2-aniso
Sy (¢,0)
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FIG. 4. Relation of the maximum value of |s}®"(¢,0)|
(|shlgher(q 0)|max) With the maximum value of sf aniso(4 0)
[s2 05 0)max)- A circle (drawn with a broken line) indicates the
densely distributed region. Atoms shown in Figs. 3(a)-3(d) are
marked with o.

period of s['®™(¢,0) depends on the distance among the
minima. Therefore, their contributions to the total scattering
function also cancel.

The [s}€""(¢,0)|max (the maximum value of |sI€" (¢,0)))
are plotted against sy *"*°(¢,0) . [the maximum value of
si'a“i“(q,O)] in Fig. 4, which shows the relation between
spET(g 0) and s7*"°(¢,0). Numerous hydrogen atoms are
distributed around the origin. Most of these atoms belong to
the “harmonic” atoms located in the inner core region of
SNase. In Fig. 4, the location of a typical atom [atom a in
Fig. 2(b)] is the circle labeled a. The “anisotropic” atoms
show [P (¢, 0)],0~0 and s7"%(g,0),4>0. The circle
labeled b is the szigher(q,O) and sf'a"is"(q,O) values for the
typical example [atom b in Fig. 2(b)]. The “anharmonic”
atoms show  [sP€"(¢,0)] 0 >>0 and  572°(g,0) 0 >0
(circle ¢ for atom c¢), or show [sF€"(g,0)],>>0 and
570, 0) max ~ 0 (circle d for the atom d).

As shown above, the si’a”i“(q,O) and szigher(q,O) values
for some atoms are relatively large. However, their average
over all the atoms, $>*"°(4,0) and S"€"*"(4,0), do not sig-
nificantly contribute to the total S(g,0). Because the degree
of anisotropy and the properties of anharmonic motions vary
from atom to atom, thus, both sf'”“is"(q,O) and sﬁigher(q,O) do
not enhance or weaken each other. To confirm this conclu-
sion, a histogram of the s2 anlso(q 0) and shlgher(q 0) values at
five g values, ranging from 1 A'to 5 A1, are shown in Fig.
5. The values of $>®¢ and Shigher(4, 0) [average values of
sz'“ms"(q,O) and szigher(q,O)] shown by arrows are small in
the entire ¢ range as shown in Fig. 1(a). Clear peaks are
observed near s;(¢,0)=0 in all distributions. These peaks are
due mainly to the “harmonic” atoms. The values of

sya0g .0 are distributed in the range, 0<s;""(g,0)
<0.183. It should be noted that 52 aniso(4 0) can be theoreti-
cally proved to be non-negative [Eq. (11)]. Although the
s74M5%(¢,0) values are all positive, their distribution sharply
peaks near zero and thus, the average is nearly zero. The
sERT(4 0) values are distributed from the negative region to
the positive region [-0.039 =M€ (4,0) =0.214] and cancel
on average.

In this paper, we investigated the non-Gaussian behavior
of the EINS data using a MD simulation of SNase in water at
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FIG. 5. Histograms of s7*"*(¢,0) (grey bars) and s/ &"(¢,0)
(black bars) values at g=1, 2, 3, 4, and 5 AL Open arrows and
solid arrows indicate the average values of s,f"‘"is"(q,O) and
speher(y 0) at each ¢ value, which equal $2%"°(g.0) and
shigher(4 0) at given g.

300 K. The non-Gaussian term can be classified into three
components: (i)  the  second-order  heterogeneity,
§Zhetero(g (), (ii) the second-order anisotropy, S>*"%(g,0),
and (iii) the higher-order term, $"€"*’(4,0). We elucidate that
the contributions of $>*%(¢,0) and S"2h*’(4,0) to the total
EINS are negligibly smaller than that of S>"°°(4,0). We
also clarified the reason why S2"%°(g,0) and S"€""(¢,0) do
not substantially contribute to the total EINS, even though
some atoms behave quite anharmonic and/or anisotropic. We
performed the MD simulation analyses for bovine pancreatic
trypsin inhibitor (BPTI), hen egg white lysozyme, and T4
lysozyme as well. The analyses of these proteins confirmed
that the second-order heterogeneity is the major origin for
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the non-Gaussianity (data not shown). We conclude that the
analysis of the non-Gaussian behavior of the experimental
EINS data in terms of the second-order heterogeneity is re-
liable and reasonable for a globular protein. The total EISF
can be approximated as

1 1
$(.0) = 5(q,0) + 5*77(q.0) = - exp(— §<Ari>q2)
k

= f P(xk)e_xqud()(k), (15)

0

where y;= %(Ar,f} and P(y;) is the distribution function of
X This equation indicates that the ¢ dependence of S(g,0)
depends mostly on the distribution of (Ar;). In the other
words, the distribution of (Ar,%) can be deduced from the ¢
dependence of the experimental S(g,0).

The analysis of the non-Gaussianity in terms of anharmo-
nicity was performed by Doster et al. [6]. They derived a
two-site jump model. The present analysis indicated that the
two-site jump model is valid for the anharmonic behavior of
each atom. However, the contribution of anharmonicity to
the total EINS is averaged out by the distribution of the
distances between two sites. Therefore, we consider that it is
quite difficult to obtain the anharmonicity from the analysis
of the non-Gaussianity of the experimental EINS. It has been
noted that the anharmonic property of protein dynamics
[4,7,27-29] is important for its function. The temperature
dependence of protein dynamics [4-7] clearly indicates that
the anharmonicity contributes to the dynamical transition.
The MD simulation at various temperatures should provide
useful information to analyze the anharmonicity with the
EINS.
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